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Learning to LearnLearning to Learn
The Art of Doing Science and EngineeringThe Art of Doing Science and Engineering

Session 16:  Digital Filters IIISession 16:  Digital Filters III

Systematic Design of 
Non-Recursive Filters
Systematic Design of Systematic Design of 
NonNon--Recursive FiltersRecursive Filters

Design MethodDesign Method

Sketch an ideal filterSketch an ideal filter

Truncate the infinite Fourier Truncate the infinite Fourier 
series to 2N+1series to 2N+1

Remove the worst Gibb’s Remove the worst Gibb’s 
EffectEffect

Observe Smoothed Observe Smoothed 
FunctionFunction

Weight the coefficientsWeight the coefficients

Reevaluate Fourier SeriesReevaluate Fourier Series

Amplification for DifferentiationAmplification for DifferentiationAmplification for Differentiation J.F. Kaiser Design MethodJ.F. Kaiser Design MethodJ.F. Kaiser Design Method

Finds both the N and the member of a family 
of windows to do the job.

• You have to specify two things beyond the shape:

– Vertical distance you are willing to tolerate missing 
the ideal.

– Transition width between the pass and stop bands

Finds both the N and the member of a family Finds both the N and the member of a family 
of windows to do the job.of windows to do the job.

•• You have to specify two things beyond the shape:You have to specify two things beyond the shape:

–– Vertical distance you are willing to tolerate missing Vertical distance you are willing to tolerate missing 
the ideal.the ideal.

–– Transition width between the pass and stop bandsTransition width between the pass and stop bands

J.F. Kaiser Design MethodJ.F. Kaiser Design MethodJ.F. Kaiser Design Method

For a band pass filter, with fp as the band pass and 
fs as the band stop frequencies, the sequence of 
design formulas is:

For a band pass filter, with For a band pass filter, with ffpp as the band pass and as the band pass and 
ffss as the band stop frequencies, the sequence of as the band stop frequencies, the sequence of 
design formulas is:design formulas is:
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Original Fourier Coefficients for a 
Band Pass Filter
Original Fourier Coefficients for a Original Fourier Coefficients for a 
Band Pass FilterBand Pass Filter
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How did Kaiser find the formulas?How did Kaiser find the formulas?How did Kaiser find the formulas?

First he assumed single discontinuity

He ran a large number of cases on the computer.
• As A increases he passed from a Lanczos’ window to a 

platform of increasing height.

• Kaiser wanted a prolate spheroidal function but he noted 
they were accurately approximated.

• He plotted results and when one number, 0.5, didn’t work, 
he dropped it to 0.4, and it did work

• Example of using what one knows plus the computer as 
an experimental tool to get very useful results.

First he assumed single discontinuityFirst he assumed single discontinuity

He ran a large number of cases on the computer.He ran a large number of cases on the computer.
•• As A increases he passed from a As A increases he passed from a LanczosLanczos’ window to a ’ window to a 

platform of increasing height.platform of increasing height.

•• Kaiser wanted a Kaiser wanted a prolateprolate spheroidalspheroidal function but he noted function but he noted 
they were accurately approximated.they were accurately approximated.

•• He plotted results and when one number, 0.5, didn’t work, He plotted results and when one number, 0.5, didn’t work, 
he dropped it to 0.4, and it did workhe dropped it to 0.4, and it did work

•• Example of using what one knows plus the computer as Example of using what one knows plus the computer as 
an experimental tool to get very useful results.an experimental tool to get very useful results.

Finite Fourier SeriesFinite Fourier SeriesFinite Fourier Series

The Fourier Functions are orthogonal, not 
only over a line segment, but for any 
discrete set of equally spaced points.

• Theory will be the same, expect that there can be only 
as many coefficients determined as there are points.

• Coefficients are determined as sums of the data 
points multiplied by the appropriate Fourier Functions.

• Resulting representation will, within roundoff, 
reproduce the original data.

The Fourier Functions are orthogonal, not The Fourier Functions are orthogonal, not 
only over a line segment, but for any only over a line segment, but for any 
discrete set of equally spaced points.discrete set of equally spaced points.

•• Theory will be the same, expect that there can be only Theory will be the same, expect that there can be only 
as many coefficients determined as there are points.as many coefficients determined as there are points.

•• Coefficients are determined as sums of the data Coefficients are determined as sums of the data 
points multiplied by the appropriate Fourier Functions.points multiplied by the appropriate Fourier Functions.

•• Resulting representation will, within roundoff, Resulting representation will, within roundoff, 
reproduce the original data.reproduce the original data.

Finite Fourier SeriesFinite Fourier SeriesFinite Fourier Series

Compute Expansion

• Compute by using 2N terms each with 2N 
multiplications and additions, (2N2), operations of 
multiplication and addition.

• Using both: 

– the addition and subtraction of terms with the same 
multiplier before doing the multiplication

– Producing higher frequencies by multiplying lower 
ones, the Fast Fourier Transform (FFT).

Compute ExpansionCompute Expansion

•• Compute by using 2N terms each with 2N Compute by using 2N terms each with 2N 
multiplications and additions, (2Nmultiplications and additions, (2N22), operations of ), operations of 
multiplication and addition.multiplication and addition.

•• Using both: Using both: 

–– the addition and subtraction of terms with the same the addition and subtraction of terms with the same 
multiplier before doing the multiplicationmultiplier before doing the multiplication

–– Producing higher frequencies by multiplying lower Producing higher frequencies by multiplying lower 
ones, the Fast Fourier Transform (FFT).ones, the Fast Fourier Transform (FFT).
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Finite Fourier SeriesFinite Fourier SeriesFinite Fourier Series

FFT has greatly transformed whole areas of science and 
engineering- what was once impossible in both time and 
cost is routinely done.

FFT and Tukey-Cooley paper.

• Moral of the Story- When you know that something cannot be 
done, also remember the essential reason why, so that later, 
when the circumstances have changed, you will not say, “It 
can’t be done.”  When you decide something is not possible, 
don’t say later that it is still impossible without reviewing all the 
details of why you originally were right in saying it couldn’t be 
done.

FFT has greatly transformed whole areas of science and FFT has greatly transformed whole areas of science and 
engineeringengineering-- what was once impossible in both time and what was once impossible in both time and 
cost is routinely done.cost is routinely done.

FFT and FFT and TukeyTukey--Cooley paper.Cooley paper.

•• Moral of the StoryMoral of the Story-- When you know that something cannot be When you know that something cannot be 
done, also remember the essential reason why, so that later, done, also remember the essential reason why, so that later, 
when the circumstances have changed, you will not say, “It when the circumstances have changed, you will not say, “It 
can’t be done.”  When you decide something is not possible, can’t be done.”  When you decide something is not possible, 
don’t say later that it is still impossible without reviewing aldon’t say later that it is still impossible without reviewing all the l the 
details of why you originally were right in saying it couldn’t bdetails of why you originally were right in saying it couldn’t be e 
donedone..

Power SpectraPower SpectraPower Spectra

Which is the sum of the squares of the two 
coefficients of a given frequency in the real 
domain, or the square of the absolute value 
in the complex notation.
• Quantity does not depend on the origin of the time, 

but only on the signal itself, contrary to the 
dependence of the coefficients on the location of the 
origin.

• It was spectral lines that opened the black box of the 
atom and allowed Bohr to see inside.

Which is the sum of the squares of the two Which is the sum of the squares of the two 
coefficients of a given frequency in the real coefficients of a given frequency in the real 
domain, or the square of the absolute value domain, or the square of the absolute value 
in the complex notation.in the complex notation.
•• Quantity does not depend on the origin of the time, Quantity does not depend on the origin of the time, 

but only on the signal itself, contrary to the but only on the signal itself, contrary to the 
dependence of the coefficients on the location of the dependence of the coefficients on the location of the 
origin.origin.

•• It was spectral lines that opened the black box of the It was spectral lines that opened the black box of the 
atom and allowed Bohr to see inside.atom and allowed Bohr to see inside.

Power SpectraPower SpectraPower Spectra

We regularly analyze black boxes by 
examining the spectrum of the input and the 
spectrum of the output, along with the 
correlations, to get an understanding of the 
insides - - not that there is always a unique 
inside, but generally we get enough clues to 
formulate a new theory.

We regularly analyze black boxes by We regularly analyze black boxes by 
examining the spectrum of the input and the examining the spectrum of the input and the 
spectrum of the output, along with the spectrum of the output, along with the 
correlations, to get an understanding of the correlations, to get an understanding of the 
insides insides -- -- not that there is always a unique not that there is always a unique 
inside, but generally we get enough clues to inside, but generally we get enough clues to 
formulate a new theory.formulate a new theory.

Power SpectraPower SpectraPower Spectra

Let us analyze carefully what we do and its 
implications, because what we do to a great extent 
controls what we can see.

• Take a sample in time of length (2L).The original signal is 
convolved with the corresponding function of the form (sin x)/x.

Let us analyze carefully what we do and its Let us analyze carefully what we do and its 
implications, because what we do to a great extent implications, because what we do to a great extent 
controls what we can see.controls what we can see.

•• Take a sample in time of length (2L).The original signal is Take a sample in time of length (2L).The original signal is 
convolved with the corresponding function of the form (sin convolved with the corresponding function of the form (sin x)/xx)/x..

Power SpectraPower SpectraPower Spectra

Sample equal spaces in time, and all the 
higher frequencies are aliased to the lower 
frequencies.
• Sampling and then limiting the range, will give the 

same results.

• When we assume the Finite Fourier Series 
representation we are making the function periodic.

• We force all non-harmonic frequencies into harmonic 
ones, we force a continuous spectrum to be a line 
spectrum.

Sample equal spaces in time, and all the Sample equal spaces in time, and all the 
higher frequencies are aliased to the lower higher frequencies are aliased to the lower 
frequencies.frequencies.
•• Sampling and then limiting the range, will give the Sampling and then limiting the range, will give the 

same results.same results.

•• When we assume the Finite Fourier Series When we assume the Finite Fourier Series 
representation we are making the function periodic.representation we are making the function periodic.

•• We force all nonWe force all non--harmonic frequencies into harmonic harmonic frequencies into harmonic 
ones, we force a continuous spectrum to be a line ones, we force a continuous spectrum to be a line 
spectrum.spectrum.

Power SpectraPower SpectraPower Spectra

The spectrum of a sum of two signals is not the 
sum of a spectra.

• When you add two functions the individual frequencies are 
added algebraically, and they may happen to reinforce or 
cancel each other, and hence give entirely false results.

• Every spectrum of real noise falls off reasonably rapidly as 
you go to infinite frequencies.

• The sampling process aliases the higher frequencies into 
lower one, and the folding produces a flat spectrum.

The spectrum of a sum of two signals is not the The spectrum of a sum of two signals is not the 
sum of a spectra.sum of a spectra.

•• When you add two functions the individual frequencies are When you add two functions the individual frequencies are 
added algebraically, and they may happen to reinforce or added algebraically, and they may happen to reinforce or 
cancel each other, and hence give entirely false results.cancel each other, and hence give entirely false results.

•• Every spectrum of real noise falls off reasonably rapidly as Every spectrum of real noise falls off reasonably rapidly as 
you go to infinite frequencies.you go to infinite frequencies.

•• The sampling process aliases the higher frequencies into The sampling process aliases the higher frequencies into 
lower one, and the folding produces a flat spectrum.lower one, and the folding produces a flat spectrum.
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Power SpectraPower SpectraPower Spectra

We call the flat spectrum for noise white noise. 
Noise is mainly in the lower frequencies.
We call the flat spectrum for noise white noise. We call the flat spectrum for noise white noise. 
Noise is mainly in the lower frequencies.Noise is mainly in the lower frequencies.

Unstable- StableUnstableUnstable-- StableStable

A bounded input if you are integrating could 
produce an unbounded output, which they 
said was unstable.
• But even a constant if integrated will produce a linear 

growth in the output.

Stability in digital filters means “not 
exponential growth” from bounded inputs, 
but allows polynomial growth, and this is 
not the standard stability criterion of classic 
analog filters.

A bounded input if you are integrating could A bounded input if you are integrating could 
produce an unbounded output, which they produce an unbounded output, which they 
said was unstable.said was unstable.
•• But even a constant if integrated will produce a linear But even a constant if integrated will produce a linear 

growth in the output.growth in the output.

Stability in digital filters means “not Stability in digital filters means “not 
exponential growth” from bounded inputs, exponential growth” from bounded inputs, 
but allows polynomial growth, and this is but allows polynomial growth, and this is 
not the standard stability criterion of classic not the standard stability criterion of classic 
analog filters.analog filters.

Effects of Lanczos’ WindowEffects of Effects of LanczosLanczos’ Window’ Window

Reduce Overshoot

• Reduced to 0.01189, a factor of 7

• Reduce first minimum to 0.00473, a factor of 10

• Significant but not a complete reduction of the Gibbs’ 
phenomenon.

• At discontinuity the truncated Fourier expansion takes 
on the mid-value of the two limits, one from each side.

Reduce OvershootReduce Overshoot

•• Reduced to 0.01189, a factor of 7Reduced to 0.01189, a factor of 7

•• Reduce first minimum to 0.00473, a factor of 10Reduce first minimum to 0.00473, a factor of 10

•• Significant but not a complete reduction of the Gibbs’ Significant but not a complete reduction of the Gibbs’ 
phenomenon.phenomenon.

•• At discontinuity the truncated Fourier expansion takes At discontinuity the truncated Fourier expansion takes 
on the midon the mid--value of the two limits, one from each side.value of the two limits, one from each side.


